Schwingversuche mit einer Prüffrequenz bis zu 400Hz

Für Schwingversuche an Schweißverbindungen steht ein neu entwickelter Magnetresonanzprüfrahmen zur Verfügung. Diese Prüfvorrichtung nutzt die erste Eigenschwingung der Anordnung von Resonanzprüfrahmen (RPR) und Probe, um die Probe dynamisch zu belasten.

Der Prüfling wird zwischen den gegenüberliegenden Seiten eines geschlossenen Rahmens vorgespannt. Eine Biegeeigenschwingung des Rahmens belastet die Probe mit einer harmonischen Schwingung. Aus der Einspannung der Probe jeweils im Schwingungsbauch der beiden Rahmenseiten ergibt sich eine reine Belastung in Probenlängsrichtung, also je nach Höhe der Vorspannung eine wechselnde Zug/Druck- oder schwellende Zugbelastung. Die Anregung in Eigenschwingform erfolgt elektromagnetisch durch Rückkoppelung eines Dehnmessstreifensignals (DMS) der Eigenschwingung.

Die Struktur erinnert an zwei Balken, die an zwei Stellen elastisch so miteinander verbunden sind, dass sie in der Eigenform gegenläufig schwingen. Anhand der Balkeneigenschwingungsform ist zu erkennen, dass auch die geschweißte Flachzugprobe in der Mitte einer Schwingungsamplitude unterliegt. Die Abbildung rechts zeigt die mechanische Umsetzung der Prüfvorrichtung im 3D-Modell. Sie besteht aus einer Grundplatte, auf welcher vier Wechselstrommagnete und der monolithische RPR gelagert sind. Die elektromagnetische Schwingungsanregung erfolgt berührungsfrei über die Hebelarme. Die Seitenlängen und Querschnitte des Rahmens wurden so dimensioniert, dass der RPR zugleich Vorspannkräfte von 60 KN und Prüfkraftamplituden von 50 kN dauerfest erträgt. Die Länge der Hebelarme wurde dazu so bestimmt, dass die Eigenfrequenz 400 Hz beträgt. 

Nähere Details zum Resonanzprüfrahmen werden im Folgenden beschrieben bzw. sind in einer Publikation von 2008 für die Große Schweißtechnische Tagung in Dresden (GST 2008) zu finden.

Prinzip eines Magnetresonanzprüfrahmens
Prinzip eines Magnetresonanzprüfrahmens
Resonanzprüfrahmen für Schweißverbindungen (Copyright FRAMEWORK)
Resonanzprüfrahmen für Schweißverbindungen

Details vom Magnetresonanzprüfrahmen

Komponenten des Magnetresonanzprüfrahmens
Komponenten des Magnetresonanzprüfrahmens

Alle erforderlichen Komponenten der Prüfvorrichtung inklusive der Steuerungs- und Messtechnik sind in der Abbildung rechts dargestellt. Ein Notebook mit LabView und Messkarte zeichnet die Messdaten wie Vorspannkraft, Kraftamplitude, Frequenz, Phase und Amplitude des Stroms am Ausgang des Leistungsverstärkers auf und leitet den Abbruch des Versuches ein, sobald ein Abbruchkriterium erfüllt ist. Die Abbruchkriterien sind ein manuelles Not Aus über die Tastatur, das Erreichen der Versuchslastspielzahl, das Abfallen auf eine bestimmte Vorspannkraft und das Überschreiten einer Toleranz für den Istwert der Kraftamplitude. Wenn eines dieser Kriterien erfüllt ist, belegt das Notebook über einen Ausgang der Messkarte einen Eingang des Microcontrollers, der dann ein Stopsignal an den Leistungsverstärker weitergibt.

Ergebnis eines Schwingversuches mit konstanter Amplitude

Schwingversuch mit konstanter Amplitude
Schwingversuch mit konstanter Amplitude

In der rechten Abbildung ist auf der linken Ordinate (y-Achse) die Prüffrequenz in Abhängigkeit von der Schwingspielzahl dargestellt. Während des Einschwingvorgangs beträgt diese 388.2 Hz. Auf der rechten Ordinate sind die Vorspannkraft und die Zugkraftamplitude in Abhängigkeit von der Schwingspielzahl (logarithmischer Maßstab) dargestellt. Während des Einschwingvorgangs bleibt die Vorspannkraft konstant bei 8.6 kN. Jedoch bereits beim Ansteuern der Zugkraftamplitude fällt die Vorspannkraft ab, was auf einen Steifigkeitsverlust (Rissbildung) hindeutet, der sich während des Versuches kontinuierlich fortsetzt.

Während der Anfangsphase des Schwingversuches schließen sich die Mikrorisse zu Makrorissen zusammen. Anschließend folgt die Phase mit dem stabilen Risswachstum bis ca. 200.000 Lastwechseln, in welcher der Makroriss allmählich anwächst. Das instabile Risswachstum begann in diesem Fall bei ca. 200.000 Lastwechseln. Während die Zugkraftamplitude in dieser Phase von der Regelung konstant gehalten wurde, sanken Prüffrequenz und Vorspannkraft mit zunehmender Geschwindigkeit ab. Mit dem Absinken der Vorspannkraft auf 7.5 kN wurde ein Abschaltkriterium erfüllt und der Versuch automatisch beendet. Der Vorspannkraftverlust betrug bis dahin ca. 15 % und die erzielte Lastspielzahl 326.500. Der Bruch wäre wenige 1000 LW später erfolgt. Insgesamt dauerte der Schwingsversuch nur 16 min für 326.500 Lastwechsel.

Ergebnis eines Schwingversuches mit variabler Amplitude

Schwingversuch mit variabler Amplitude
Schwingversuch mit variabler Amplitude

In der rechten Abbildung ist das Ergebnis eines Schwingversuches mit variablem Amplitudenverlauf dargestellt. In Abhängigkeit von der Schwingspielzahl sind die Verläufe für die Vorspannkraft, die Zugkraftamplitude und Prüffrequenz ausgewertet worden.
Die Vorspannkraft wurde vor dem Versuch auf 8.0 kN eingestellt. Beim anschließenden Einschwingen lag die Prüffrequenz zunächst bei 386.0 Hz und fiel dann beim Erreichen der Zugkraftamplitude geringfügig auf 385.8 Hz ab. Als 100%-Wert für die Zugkraftamplitude wurde 7.0 kN gewählt, die auch für die ersten 200.000 LW beibehalten wurde.

Danach erfolgte die Blocklastsimulation zur Ermittlung der Betriebsfestigkeit, wobei jeweils für die nächsten 200.000 LW eine Reduzierung auf 75% und auf 50% vorgenommen wurde. Anschließend wurde wieder der 100%-Wert der Zugkraftamplitude angesteuert. Sowohl die Prüffrequenz als auch die Vorspannkraft blieben dabei annährend konstant. Zum Schluss wurde eine Überlast simuliert, bei welcher die Zugkraftamplitude auf 125% (8.75 kN) gesteigert wurde. Bereits beim Ansteuern dieser höheren Amplitude fiel die Vorspannkraft kontinuierlich ab, was auf einen fortschreitenden Steifigkeitsverlust hindeutete. Auch bei der Prüffrequenz ergab sich ein geringfügiger Abfall, der aber weniger als Indikator für den Steifigkeitsverlust geeignet ist. Der Schwingversuch stoppte automatisch als das Abbruchkriterium für die Vorspannkraft von 7.5 kN bei 1.136.000 LW erreicht wurde (gesamte Versuchszeit nur 50min) . Zu diesem Zeitpunkt war die Vorspannkraft bereits deutlich unterhalb der Zugkraftamplitude, womit am Versuchsende ein negatives Spannungsverhältnis von R = -0.08 vorlag. Somit konnte als weiteres Ergebnis bei der Simulation einer Überlast gezeigt werden, dass diese neuartige Resonanzprüfvorrichtung auch für Schwingversuche mit Wechselbeanspruchungen geeignet ist.